• Adeeb Ahmed Department of Geology, University of Malaya, Malaysia
  • Muhammad Asif Khan Bahria University Islamabad Campus


The shale intervals of the Massive Sand Member of the Early Cretaceous Lower Goru Formation were selected for geochemical analysis in the southern Indus Basin, particularly the Thar Platform area of Pakistan. The formation was evaluated for organic matter quantity, quality, and maturity to determine the petroleum generation potential using TOC and Rock-Eval Pyrolysis measurements. The studied samples contain TOC ranging from 0.57- 3.35 wt.%, indicating fair to very good source rock potential. The analyzed samples have hydrogen index values ranging from 78 to 298 mg HC/g TOC, indicating mainly terrestrial organic matter input with kerogen type-III along with minor kerogen type-II/III. The Tmax values range from 426 to 439°C, along with calculated VRo values of 0.51-0.74% which exhibits an immature to early mature status for this formation. Based on the analysis, some shale intervals contain mature organic matter for mainly gas generation, but commercial amounts of gas have not yet been generated at the current maturity level. The present study investigates the petroleum generation potential and suggests the shale intervals of the Massive Sand Member of Lower Goru Formation as a secondary target (at more depth) after the Sembar Formation in the southern Indus Basin, Pakistan.


Ahmad, M. A., & Zaigham, N. A. (1993). Seismo-stratigraphy and basement configuration in relation to coal bearing horizons in the Tharparkar desert, Sindh Province, Pakistan (Vol. 100). Geological Survey of Pakistan.

Ahmed, A., Khan, T., Jahandad, S., Hakimi, M. H., Lashin, A. A., & Abidin, N. S. Z. (2020). Organic geochemistry indicates source-rock characteristics and hydrocarbon potential: A case study from Early Cretaceous Sembar Formation, southern Indus Basin, Pakistan. Arabian Journal of Geosciences, 13(23), 1-12.

Ahmed, W., Azeem, A., Abid, M. F., Rasheed, A., & Aziz, K. (2013). Mesozoic structural architecture of the middle Indus Basin, Pakistan—controls and implications. In PAPG/SPE annual technical conference, Islamabad, Pakistan (pp. 1-13).

Abdullah, W. H., Togunwa, O. S., Makeen, Y. M., Hakimi, M. H., Mustapha, K. A., Baharuddin, M. H., ... & Tongkul, F. (2017). Hydrocarbon source potential of eocene-miocene sequence of western sabah, Malaysia. Marine and Petroleum Geology, 83, 345-361.

Baig, M. O., Harris, N. B., Ahmed, H., & Baig, M. O. A. (2016). Controls on reservoir diagenesis in the Lower Goru sandstone formation, Lower Indus Basin, Pakistan. Journal of Petroleum Geology, 39(1), 29-47.

Biswas, S. K. (1982). Rift basins in western margin of India and their hydrocarbon prospects with special reference to Kutch basin. AAPG Bulletin, 66(10), 1497-1513.

Dow, W. G. (1977). Kerogen studies and geological interpretations. Journal of geochemical exploration, 7, 79-99.

Fassett, J. E., Durrani, N. A., & Area, B. (1994). Geology and coal resources of the Thar coal field, Sindh Province, Pakistan. US Geol Surv open-file report, 94-167.

Khan, R. A., Khan, S. A., Khan, Z. M., Tagar, M. A., Taiq, M. A., Qureshi, M. J., ... & Shah, S. A. A. (1996). Exploration and assessment of coal in Sinhar Vikian-Varvai area (Block 1), Thar coalfield, Pakistan. Geological Survey Pakistan. IR, (629), 37.

Kuuskraa, M. V., Stevens, M. S., Van Leeuwen, M. T., & Moodhe, M. K. (2011). World Shale Gas Resources: An Initial Assessment of 14 Regions Outside the United States.

Hakimi, M. H., Al-Matary, A. M., Abdullah, W. H., Ahmed, A., Lashin, A. A., Shah, S. B. A., & Yahya, M. M. (2020). Oil source rock characteristics of the pelagic carbonates in the Shabwah depression, southeastern Sabatayn Basin, Yemen. Carbonates and Evaporites, 35(2),1-17.

Hunt JM (1964). The origin of petroleum in carbonate rocks. In: Chilingar GV, Bissell HJ, Fairbridge RW (eds) Carbonate rocks, vol 9. Elsevier, New York, pp 225–251.

Kadri, I. B. (1995). Petroleum Geology of Pakistan: Pakistan Petroleum Limited. Karachi, Pakistan.

Langford, F. F., & Blanc-Valleron, M. M. (1990). Interpreting Rock-Eval pyrolysis data using graphs of pyrolizable hydrocarbons vs. total organic carbon. AAPG bulletin, 74(6), 799-804.

McCarthy, K., Rojas, K., Niemann, M., Palmowski, D., Peters, K., & Stankiewicz, A. (2011). Basic petroleum geochemistry for source rock evaluation. Oilfield Review, 23(2), 32-43.

Magoon, L. B., & Dow, W. G. (1994). The petroleum system: chapter 1: Part I. Introduction.

Miles, J.A. (1989). Illustrated glossary of petroleum geochemistry. Oxford Science Publication, Oxford University Press, New York, 137pp.

Ministry Of Energy (2020). Petroleum Division.

Peters, K. E. (1986). Guidelines for evaluating petroleum source rock using programmed pyrolysis. AAPG bulletin, 70(3), 318-329.

Peters, K. E., & Cassa, M. R. (1994). Applied source rock geochemistry: Chapter 5: Part II. Essential elements.

Shah, S. (1977). Stratigraphy of Pakistan, Geological Survey of Pakistan Memoirs 12. Islamabad, Pakistan: Geol Surv Pakistan.

Siddiqui, N. K. (2016). Petroleum Geology, basin Architecture and stratigraphy of Pakistan. Nusrat K. Siddiqui.

Tissot, B. P., Pelet, R., & Ungerer, P. H. (1987). Thermal history of sedimentary basins, maturation indices, and kinetics of oil and gas generation. AAPG bulletin, 71(12), 1445-1466.

Waples, D. W. (1994). Modeling of Sedimentary Basins and Petroleum Systems: Chapter 18: Part IV. Identification and Characterization.

Zaigham, N. A., & Mallick, K. A. (2000). Prospect of hydrocarbon associated with fossil-rift structures of the southern Indus basin, Pakistan. AAPG bulletin, 84(11), 1833-1848.




How to Cite

Ahmed, A., & Khan, M. A. (2021). GEOCHEMICAL EVALUATION OF EARLY CRETACEOUS MASSIVE SAND MEMBER OF LOWER GORU FORMATION, BITRISM BLOCK, THAR PLATFORM, PAKISTAN. Bahria University Research Journal of Earth Sciences, 6, 16–22. Retrieved from